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Abstract. We present a non-perturbative study of an extended Falicov-Kimball model in one dimension.
Working within the binary alloy interpretation, we include the spin of the itinerant electrons and a Hubbard
interaction to model the inter-electron correlations. We derive an effective Ising model for the atomic
configuration in order to show how the Hubbard term affects the stability of the phase separated states.
Furthermore, we investigate the competition between the Mott insulator state of the itinerant electrons
and the checkerboard phase of the spinless Falicov-Kimball model.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.30.+h Metal-insulator transitions
and other electronic transitions

1 Introduction

Although originally introduced as a model of valence tran-
sitions [1], the Falicov-Kimball Model (FKM) is today
mostly studied as a model for the formation of ordered
states in a binary alloy A1−xBx due to the scattering of
itinerant (c) electrons off the atomic configuration [2]. The
spin of the c electrons is, however, usually ignored as only
the charge order is of interest. Furthermore, it is assumed
that the only relevant correlations in the system are be-
tween the c electrons and the atoms. Although this highly
idealized model contains the basic ingredients of a micro-
scopic model of a binary alloy [3], it is, however, insuf-
ficient to properly describe the situation in a real solid,
where the c-electron correlations play a significant role.
For this reason, we study here an extended version of the
FKM where spin and correlations between the c electrons
are included.

The Hamiltonian for this one-dimensional (1D) ex-
tended FKM (EFKM) is written

H = −t
∑

j,σ

{
c†j,σcj+1,σ + H.c.

}

+ G
∑

j,σ

W (xj)nc
j,σ + U

∑

j

nc
j,↑n

c
j,↓. (1)

Here t > 0 is the c-electron hopping, U is the Hubbard
repulsion between the c electrons, G = εB − εA is the dif-
ference between the single-particle energies of the A and B
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atoms and W (xj) is a potential which is 1 (0) on B-atom
(A-atom) sites. Deformations of the lattice due to differ-
ing atomic radii of the A and B atoms are ignored. The
concentration of the two atomic constituents is fixed at
1−x and x for the A and B atoms, respectively. The itin-
erant conduction electron concentration is nc. We work
throughout at T = 0.

The configuration of the atoms, W (xj), is chosen to
minimize the energy of the c electrons. In the spinless
case, a wide variety of different atomic configurations have
been obtained. In the G → ∞ limit the A and B atoms
adopt either a periodic arrangement (the crystalline state)
or segregate to occupy different macroscopic regions of
the lattice [2,4]. At weak-coupling, perturbation theory
shows that the ground state configuration is either a crys-
talline state (in analogy to a Peierls instability) or a phase-
separated state where the homogeneous and crystalline
states or two different crystalline states coexist [5,6]. Nu-
merical studies have revealed that at intermediate cou-
pling a complicated phase diagram results, where segre-
gated (SEG), crystalline and phase-separated states are
possible [7,8]. Interestingly, it is found that the behaviour
of the model in higher dimensions is qualitatively very
similar to the 1D case (i.e. away from half-filling there
is a competition between charge order and phase separa-
tion) [9].

Until now, most of the work on the various extensions
of the FKM has focused on the spinless model [10–13].
Recently, however, there has been increasing interest in
the inclusion of spin. This has been most comprehen-
sively studied in the D → ∞ limit, although mainly in
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the interpretation of the FKM as a model for valence-
transition systems [14,15]. More closely related to the
physics of binary alloys is the possible coexistence of
spin and charge order, although this requires that one of
the atomic species is magnetically active [16,17]. In both
cases, it is found that charge-ordering persists when the c
electrons have spin, but the influence of correlations be-
tween the c electrons remains to be fully investigated [17].

In this work, we extend our previous study
of the spinless FKM to the Hamiltonian described
by equation (1) [13,18]. The non-perturbative bosoniza-
tion method is generalized in order to discuss in detail the
effect of the Hubbard interaction on the formation of the
SEG phase. We find that attractive (repulsive) interac-
tions lower (raise) the critical coupling for the SEG phase
to be realized. This is understood in terms of the change
in the charge compressibility of the c electrons due to the
interactions. Furthermore, the competition between the
Mott insulator state of the Hubbard model and the charge-
ordered phases of the FKM is considered. We demonstrate
that for a crystalline atomic configuration the EFKM is
closely related to the ionic Hubbard model, indicating the
presence of a novel dielectric insulator phase [19,20].

2 Bosonization

The bosonization technique has been used for many years
to study the critical properties of one-dimensional many-
electron systems [21]. The bosonization of a tight-binding
Hamiltonian is often performed in the continuum limit
where the lattice spacing a → 0; this approach fails when
interactions with localized states are present. It has re-
cently been demonstrated that the conventional bosoniza-
tion scheme can be modified for the itinerant electrons in
the FKM to account for the interaction with the local-
ized states [13,18]. This is achieved by assuming a finite
cut-off α > a on the wavelength of the bosonic density
fluctuations [22].

The basic bosonic objects in the theory are the coher-
ent particle-hole excitations about the right and left Fermi
points

ρν,σ(q) =
∑

0<νk′<π/a

c†k′−q,σck′,σ. (2)

The chiral species is denoted by ν = R(+), L(−) as sub-
script (otherwise). For a system of size L � a the ρν,σ(q)
obey the standard commutation relations

[ρν,σ(q), ρν′,σ′(q′)]− = δν,ν′δσ,σ′δq,−q′
νqL

2π
(3)

for wave vectors |q| < π
α . For sufficiently small interac-

tions, the density operators generate the entire state space
of the linearized fermion Hamiltonian. It is, however, more
convenient to discuss the Bose representation in terms of
the dual Bose fields

φσ(xj) = −i
∑

ν

∑

q �=0

π

qL
ρν,σ(q)Λα(q)eiqxj (4)

θσ(xj) = i
∑

ν

∑

q �=0

ν
π

qL
ρν,σ(q)Λα(q)eiqxj . (5)

The Bose fields are physically interpreted as potentials:
∂xφσ(xj) and ∂xθσ(xj) are, respectively, proportional to
the deviation from the noninteracting values of the average
spin-σ electron and current density at xj . It is convenient
to divide the bosonic representation into charge- and spin-
sectors, defined by the linear combinations

φc(xj) =
1√
2
[φ↑(xj) + φ↓(xj)] (6)

φs(xj) =
1√
2
[φ↑(xj) − φ↓(xj)] (7)

and similarly for the θ-fields. ∂xφc(xj) is proportional to
the charge density and ∂xφs(xj) is proportional to the spin
density of the conduction electrons at xj .

The restriction to density fluctuations with wave vec-
tors |q| < π

α is enforced in equations (4) and (5) by the
cut-off function Λα(q). The cut-off function monotonically
decreases from unity at q = 0 to zero at the Brillouin
zone boundaries, with a characteristic decay constant of
O(1/α). The continuous variation of Λα(q) reflects the
gradual crossover of the character of the density fluctu-
ations from long-range bosonic to short-range fermionic.
Because the cut-off function excludes density fluctuations
with wavelengths <O(α) from the definition of the Bose
fields, the bosonic description effectively assumes that the
electrons are delocalized over a characteristic length ∼α.
This is reflected in the “smearing” of the Bose field com-
mutators

[φη(xj), θη′(xj′ )]− =
iπ

2
δη,η′sgnα(xj′ − xj) (8)

[∂xφη(xj), θη′(xj′ )]− = −iπδη,η′δα(xj′ − xj) (9)

where the index η = c, s. sgnα(x) and δα(x) are the
α-smeared sign and Dirac delta functions, respectively.
The precise form of these functions depends upon Λα(q)
through the definitions

δα(x) =
∑

q �=0

1
L

Λ2
α(q) cos(qx) (10)

sgnα(x) =
∑

q �=0

1
2qL

Λ2
α(q) sin(qx) (11)

where the sums extend over the first Brillouin zone.
To describe the low-energy physics the c-electron dis-

persion at the two Fermi points is assumed to be linear.
Correspondingly, we decompose the j-site annihilation op-
erator in terms of states in the vicinity of kF (the right-
moving fields) and −kF (the left-moving fields):

cj,σ ≈ cR,j,σeikF xj + cL,j,σe−ikF xj .

A Bose representation for the slowly-varying cν,j,σ may
be derived by requiring that it correctly reproduces the
fermion anticommutators and noninteracting expectation
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values. This is the so-called Mandelstam identity

cν,j,σ =

√
Aa

α
χ̂ν,σ exp

(
− iν√

2
[φc(xj)

+σφs(xj) − νθc(xj) − νσθs(xj)]

)
. (12)

This identity is rigorously valid only in the long-
wavelength limit: because of the wavelength cut-off in the
definition of the Bose fields, equation (12) may not cor-
rectly reproduce the short-range [<O(α)] properties of the
cν,j,σ. The dimensionless parameter A is a normalization
constant which depends on the cut-off function. The Klein
factors χ̂ν,σ are Majorana fermions, and obey the relation

[
χ̂ν,σ, χ̂ν′,σ′

]
+

= 2δν,ν′δσ,σ′ . (13)

The Klein factors χ̂ν,σ commute with the Bose fields. They
are present in order to guarantee the correct accounting
of signs in different fermionic operators [21].

An important identity is the representation for the
normal-ordered c-electron number operator:

: nc
j,σ := − a

π
∂xφσ(xj)

+
Aa

α

∑

ν

χ̂ν,σχ̂−ν,σei
√

2ν[φc(xj)+σφs(xj)]e−i2νkF xj . (14)

The first term on the RHS gives the deviation of the
c-electron density from its homogeneous non-interacting
value and is entirely due to forward scattering (ν → ν
processes); the second term is the first order backscatter-
ing (ν → −ν processes) correction.

2.1 The Hamiltonian in Boson form

The bosonization of the Hamiltonian is accomplished by
inserting the relevant bosonization identities. The follow-
ing analysis is, however, simplified by first expressing the
atomic species at each site in terms of pseudospin-1

2 oper-
ators, W (j) − 1

2 = τz
j . In the pseudospin representation,

spin-↑ at site j indicates an A-atom and spin-↓ a B-atom.
The fixed concentration of the atomic constituents implies
a constant pseudospin magnetization mz = 1

2 − x. The
electron-atom interaction is then re-written

G
∑

j,σ

W (xj)nc
j,σ = G

∑

j,σ

τz
j : nc

j,σ : +GNncmz. (15)

Since the last term on the right hand side is a con-
stant which does not contribute to the physics it will
be neglected in the following. Substituting equation (14)
into equation (15) and using the bosonization identities,

we obtain the bosonized Hamiltonian

H =
∑

η=c,s

vηa

2π

∑

j

{
1

Kη
(∂xφη(xj))

2 + Kη (∂xθη(xj))
2

}

− 2U
A2a2

α2

∑

j

cos[2
√

2φc(xj) − 4kF xj ]

+ 2U
A2a2

α2

∑

j

cos[2
√

2φs(xj)]

−
√

2Ga

π

∑

j

τz
j ∂xφc(xj)−4G

Aa

α

∑

j

τz
j cos[

√
2φs(xj)]

× sin[
√

2φc(xj)− 2kF xj ]. (16)

Since the Klein factor products commute with the
Hamiltonian, they have been replaced by their eigenvalues
χ̂Rσχ̂Lσ = 〈χ̂Rσχ̂Lσ〉 = −i. This choice gives the standard
sign of the Umklapp and backscattering terms. Note that
the sign of the 2kF -backscattering off the pseudospins is
unimportant, as this term acts like a hybridization be-
tween the left- and right-moving fermions, hence only its
absolute value is significant.

The first term on the RHS of equation (16) describes
the forward-scattering interactions between the c elec-
trons. The separation of charge and spin is clear, with
different charge and spin velocities vη and Luttinger pa-
rameters Kη, η = c, s. In the limit Ua/vF � 1, these can
be expressed in the analytical forms

Kc =
1√

1 + Ua
πvF

, vc =
vF

Kc
(17)

Ks =
1√

1 − Ua
πvF

, vs =
vF

Ks
. (18)

The Fermi velocity is defined vF = −2ta sin(kF a) where
kF = πnc/a. By rescaling the spin and charge fields

φ̃η(xj) =
1√
Kη

φη(xj), θ̃η(xj) =
√

Kηθη(xj) (19)

the first term on the RHS of equation (16) is converted
into the standard non-interacting Bose field Hamilto-
nian [21]. The second term of equation (16) describes the
Umklapp scattering of the c electrons, while the third
term is due to the inter-electron backscattering. The
fifth and sixth terms are the forward-scattering and 2kF -
backscattering interactions of the c electrons with the
pseudospins.

3 The canonical transform

The phase diagram of the spinless FKM reveals a
competition between crystalline order and the SEG
phase [8,13,18]. The crystalline order originates from the
backscattering of the c electrons off the atomic configu-
ration. For a periodic atomic configuration with wavevec-
tor 2kF , the backscattering term hybridizes the left- and
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right-moving electrons, thus opening a gap in the c elec-
tron spectrum and lowering the total electronic energy.
This competes with the tendency to segregate; the effec-
tive segregating interaction, however, is not clearly seen
in equation (16). It can be presented in a more obvious
way by a canonical transformation which removes the
forward-scattering interaction. We generalize the trans-
formation used in the analysis of the spinless FKM to our
extended model:

Û = exp

⎧
⎨

⎩i

√
2KcGa

πvc

∑

j′
τz
j θ̃c(xj′ )

⎫
⎬

⎭. (20)

Using the Baker-Hausdorff formula the canonical trans-
formation of the Hamiltonian is carried out to all orders.
The transformed Bose operators are written

Û †φ̃c(xj)Û = φ̃c(xj) −
√

KcGa√
2vc

∑

j′
τz
j′sgnα(xj′ − xj)

(21)

Û †∂xφ̃c(xj)Û = ∂xφ̃c(xj) +
√

2KcGa

vc

∑

j′
τz
j′δα(xj − xj′ ).

(22)

All other operators are invariant under the transforma-
tion. In particular, the spin fields and pseudospin opera-
tors are unchanged: i.e., the atomic configuration and also
the magnetic properties of the c electrons are maintained.

By substituting the transformed Bose fields [Eqs. (21)
and (22)] into equation (16) we obtain the Hamiltonian

Û †HÛ =
∑

η=c,s

vηa

2π

∑

j

{(
∂xφ̃η(xj)

)2

+
(
∂xθ̃η(xj)

)2
}

+2U
A2a2

α2

∑

j

cos
[
2
√

2Ksφ̃s(xj)
]

−2U
A2a2

α2

∑

j

cos
[
2
√

2Kcφ̃c(xj) − 2K(xj)

−4kF xj

]
− KcG

2a2

πvc

∑

j,j′
τz
j δα(xj − xj′ )τz

j′

−4G
Aa

α

∑

j

τz
j cos

[√
2Ksφ̃s(xj)

]

× sin
[√

2Kcφ̃c(xj) −K(xj) − 2kF xj

]
(23)

where

K(xj) =
KcGa

vc

∑

j′
τz
j′sgnα(xj′ − xj). (24)

Since the expressions for the transformed charge fields
are exact, it follows that equation (23) is equivalent
to equation (16). The only difference is that the basis has
been rotated to give an explicit representation of the ef-
fective interactions between the pseudospins, i.e. the Ising
term on the third line.

This Ising term originates from the removal of the
forward-scattering coupling between the c electrons and
the pseudospins. It is clear from equation (1) that the
electron-atom interaction favours c-electron occupation of
A-atom sites and disfavours occupation of B-atom sites.
Because of the finite spread of the c-electron wavefunc-
tions, this repulsion is spread over a characteristic length
scale ∼α. This is apparent in equation (23) where α sets
the range of the effective interaction potential δα(x) in
the Ising term. This potential is the same α-smeared δ-
function as for the Bose field commutator. For any rea-
sonable choice of cut-off function, the potential δα(x) is
positive for |x| < α and decreases rapidly with increas-
ing distance. For example, for the following two cut-off
functions

Λα(q) =

{
exp(−α|k|/2π) Exponential
exp(−α2k2/2π2) Gaussian

(25)

the corresponding interaction potential is given by

δα(x) =

{
α/(α2 + π2x2) Exponential
(
√

π/2α) exp(−π2x2/4α2) Gaussian.
(26)

Despite its importance to our analysis, it is not possible
to determine the exact range of the potential α within the
bosonization scheme. Although a quantitative estimate is
in general difficult, in the limit nc � 1 the individual be-
haviour of the c electrons in the FKM may be well approx-
imated by the problem of a quantum particle in a poten-
tial with two values ±G/2 [18,24]. Solving the associated
Schrodinger equation for the low-energy (E = 0) states,
for particles moving in a region with potential −G/2 (sites
occupied by A atoms) the wavefunctions are plane waves;
for regions where the potential is G/2 (sites occupied by B
atoms) the wavefunctions decay exponentially on a length
scale ξ ∼ G−1/2. The identification of α with the finite
spread of the delocalized c-electron wavefunctions implies
that α ∼ ξ, as was previously found in a similar bosoniza-
tion study of the Kondo lattice model [22]. We therefore
use in the following the approximation α = bG−1/2 where
b is a constant to be determined.

Because the Ising interaction potential δα(x) is posi-
tive for x < α and decreases rapidly with increasing dis-
tance, the Ising term describes ferromagnetic interactions
between the pseudospins, i.e. the Ising term favours the
clustering or segregation of alike atoms. The structure and
interpretation of this interaction is identical to that in the
spinless case; the magnitude of this term is, however, in-
creased by a factor of 2KcvF /vc = 2K2

c . While the factor
of two is due to the extra degree of freedom from the
spins, the presence of Kc is a consequence of the change
in the charge compressibility in the interacting system.
For a Tomonaga-Luttinger liquid, the compressibility is
given by κ = κ0K

2, where κ0 is the charge compressibil-
ity in the non-interacting system. Repulsive interactions
(K < 1) therefore decrease the compressibility, whereas
attractive interactions (K > 1) increase it. In the SEG
phase, the c electrons tend to stay within the A atom clus-
ter, enhancing their density: a reduced (enhanced) charge
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compressibility will therefore resist (support) the forma-
tion of the SEG phase.

4 The phase diagram

From the transformed Hamiltonian an effective model for
the pseudospins can be derived by replacing the charge
and spin fields by their expectation values in the 2kF -
backscattering interaction with the pseudospins [18]:

Heff = −KcG
2a2

πvc

∑

j,j′
τz
j δα(xj − xj′ )τz

j′

− 4G
Aa

α

∑

j

τz
j cos

[√
2Ks〈φ̃s〉

]
sin
[√

2Kc〈φ̃c〉

− 〈K(xj)〉 − 2kF xj

]
. (27)

Here also K(xj) is replaced by its expectation value, as it
is a constant of motion. K(xj) displays very different be-
haviours in the crystalline and the SEG states. Referring
to equation (24) we may interpret K(xj) as subtracting
the magnetization of the pseudospins more than α to the
right of site j from the magnetization of the pseudospins
more than α to the left of site j: this quantity vanishes
for an infinite chain in a crystalline phase. Therefore, in
the crystalline phase only the mean value of 〈φ̃c〉 has to
be chosen to minimize the backscattering energy.

For the SEG phase, in contrast, the different magneti-
zation of the pseudospins in the A- and B-atom fractions
of the lattice produce a linear dependence of K(xj) on xj .
Assuming that the B-atom fraction resides to the left of
site j′ and the A-atom fraction is located to the right of
site j′, we obtain K(xj) ≈ (KcGa/vc)|j′ − j| [18]. Since
the SEG phase does not produce a gap in the c-electron
spectrum, the expectation values of the φ̃c,s fields are de-
termined by the Hubbard interaction.

4.1 Segregation

The effective Hamiltonian equation (27) can be used to
the derive the critical Coulomb repulsion for the SEG
phase. We first restrict the range of the Ising interaction
to nearest-neighbours only

− KcG
2a2

πvc

∑

j,j′
τz
j δα(xj − xj′ )τz

j′ ≈

− 2KcG
2a2

πvc
δα(a)

∑

j

τz
j τz

j+1. (28)

Since the potential δα(x) falls off rapidly with increasing
distance (see Sect. 3), this truncation should not signifi-
cantly affect the stability of the SEG phase. Making the
appropriate replacements for the Bose fields and K(xj), we

obtain an effective Hamiltonian in the form of a quasiperi-
odic Ising model (QPIM):

Heff = −J
∑

j

τz
j τz

j+1 + h
∑

j

τz
j cos(ωj + φ). (29)

In equation (29) J = KcG
2a2δα(a)/πvc, h =

−(4GAa/α) cos(
√

2Ks〈φ̃s〉), ω = ω± ≈ πnc ± KcGa/vc

(the two values ω+ and ω− are realized in the different
sections of the segregated lattice) and φ is a constant. In
general, ω±/π are irrational numbers.

The QPIM has been studied by Sire for constant ω [25].
The phase diagram of the model exhibits a competition
between ferromagnetic order due to the Ising interac-
tion, and the so-called adiabatic order due to the anti-
alignment with respect to the magnetic field. The ferro-
magnetic phase is stable for J > Jc1 = h/ sin(1/2ω),
while the adiabatic phase is found at couplings J <
Jc2 = h sin(1/2ηω) sin(1/2[η + 1]ω)/ sin(1/2ω), where η
is the largest integer smaller than π/ω. For intermedi-
ate couplings Jc2 < J < Jc1, a quasiperiodic arrange-
ment of adiabatically- and ferromagnetically-ordered clus-
ters is found. The weak-coupling adiabatic and strong-
coupling ferromagnetic phases correspond to the crys-
talline and SEG phases, respectively, but there is no di-
rect analogue of the QPIM’s intermediate phase. Although
the work in [25] was performed in the grand canoni-
cal ensemble, it is possible to apply the results to the
Hamiltonian equation (29) with a fixed magnetization for
the pseudospins. In particular, the critical coupling Jc1

for ferromagnetism can be used to obtain the critical cou-
pling for the appearance of the SEG phase, as it was de-
rived from general arguments which remain valid in the
canonical ensemble. Inserting the values of the coupling
constants in equation (29) into the definition of Jc1 the
critical coupling Gc is given by

Gca

vF
K2

c sin(1
2 [πnc + K2

c Gca/vF ]) =

2Aπ

αδα(a)
| sin(
√

2Ks〈φ̃s〉)|. (30)

Note that we have chosen ω = ω+ to control the critical
coupling as this gives the correct monotonic dependence
of Gc upon the filling in the spinless case [5,8].

4.1.1 U =0

We first consider the case U = 0 which was partially ad-
dressed in [18]. In the absence of interactions between the
c electrons Kc = 1 and the field φ̃s in equation (30) is re-
placed by its non-interacting expectation value, 〈φ̃s〉 = 0.
The effective Hamiltonian equation (27) is then the same,
up to a factor of two, as the one for the spinless model [18].
It follows that the critical coupling for segregation in our
model with B-atom concentration x and c-electron con-
centration nc is identical to the critical coupling in the
spinless model with B-atom concentration x and c-electron
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concentration nc/2. For the case x = nc/2 the critical cou-
pling is given by

Gc0/t =
0.5 sin(ncπ/2)
1 − sin(ncπ/2)

. (31)

This is illustrated in Figure 1 as the dashed blue line. The
blue circles are the numerical results for the critical cou-
pling in the spinless FKM obtained by Gajek et al. [8].

The relationship between the phase diagram of the
spinless FKM and the U = 0 limit of the EFKM can be
made more precise. Considering equation (1) it is noted
that when U = 0 the density of spin σ electrons at site
j depends only on the atomic configuration and not on
the density of the spin −σ electrons. Consequently, the
atomic configuration that minimizes the energy of one
electron spin-component also minimizes the total energy
of the conduction electrons. Minimizing the energy of a
single spin-component with respect to the atomic config-
uration is effectively identical to the spinless FKM. This
means that for B-atom and conduction electron concen-
trations x and nc, respectively, the ground state atomic
configuration of the EFKM is always identical to that in
the FKM with B-atom and conduction electron concen-
trations x and nc/2 and the same value of the coupling G.

This explains the differences between the phase dia-
grams of the spinless FKM and EFKM along the line
x + nc = 1 [26]. In the former case, the system is at
half-filling, which for sufficiently large G always exhibits a
crystalline configuration [4]. In the latter case, crystalline,
phase-separated and segregated states are all found for
x + nc = 1. The mapping of the EFKM onto the spin-
less FKM indicates that the condition x + nc = 1 for the
EFKM is only ever equivalent to a half-filling state in the
spinless FKM for x = 1. For all other values of x, the
system maps onto the spinless FKM below half-filling. It
is thus not surprising to obtain phase-separation in the
EFKM for x + nc = 1 and x < 1.

Most work on the EFKM has been performed to model
valence-transitions where charge-transfer between the con-
duction electrons and localized orbitals takes place [14]. In
this case, the limitation of each localized orbital to single
occupation prevents a direct mapping onto the phase di-
agram of the spinless FKM. In particular, consider the
“half-filling” case x + nc/2 = 1. If the localized electron
energy level is located at the centre of the conduction band
in the G = 0 system, the localized level and the conduc-
tion band are both half-filled. Lowering the energy of the
localized level, a charge transfer from the conduction band
into the localized orbital takes place. In the spinless case,
this “valence change” is only completed when the local-
ized level lies at the bottom of the conduction band; in
the EFKM, however, it occurs before the localized level
reaches the bottom of the conduction band. The relation-
ship between the spinless and spinful models is thus more
complicated than in the binary alloy interpretation.
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Fig. 1. (Color online) Critical line Gc(n) for the formation of
the SEG phase. Note that the SEG phase is always realized for
G > Gc. It is assumed that x = nc/2. In the legend, the value
of U is given in units of πvF /a. The U = 0 curve was originally
derived for the spinless model; the expression was derived by
fitting to the data points (blue circles) taken from reference [8].

4.1.2 U �= 0

For finite U the two cases U > 0 (repulsive interactions)
and U < 0 (attractive interactions) have to be distin-
guished. For G = 0, the former case is at the Tomonaga-
Luttinger fixed point for nc �= 1 and a Mott insulator at
nc = 1, i.e. the charge and spin sectors are gapless except
at half-filling of the conduction band, where the charge
sector develops a gap. The Mott insulator will be discussed
in Section 4.2. In the case of repulsive interactions, the
system is a Luther-Emery liquid for all fillings, with the
spin sector being gapped. The Luther-Emery liquid can be
phenomenologically visualized as a system where the on-
site singlet-pairing of electrons requires a finite energy for
a spin excitation. This pairing does not, however, imply
superconductivity as there is a competition with charge-
density wave formation, which is derived by comparing
the respective susceptibilities [21].

For nc < 1 the charge sector remains gapless for both
attractive and repulsive interactions. In the U = 0 case
the forward-scattering coupling of the charge sector to the
pseudospins is found to be principally responsible for the
formation of ordered atomic configurations. Although we
may expect the charge sector to be similarly important in
the U �= 0 case, the renormalization of the c-electron prop-
erties by the interactions must be taken into account. Note
that we continue with the assumption that x + nc/2 < 1.

As outlined above the rescaling of the charge suscepti-
bility changes the magnitude of the segregating interaction
(see Sect. 3). To obtain the critical segregation line, how-
ever, the effect of the interactions on the spin sector have
to be considered. For U > 0, 〈φs〉 can still be replaced
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by its non-interacting expectation value in equation (30).
In the Luther-Emery liquid, however, the spin-sector is
gapped and fluctuations in φs are suppressed, φs = 〈φs〉.
The expectation value is chosen to minimize the backscat-
tering energy [second term on the RHS of equation (23)]
which implies

√
Ks〈φs〉 = π(2m − 1)/2

√
2 where m is an

integer. Inserting this result into equation (30) we find
that the RHS is the same as in the non-interacting case.
Thus, the formation of the Luther-Emery state does not
alter the c-electron backscattering off the atomic con-
figuration, and hence has no influence on the critical
segregation line. This observation underlines the impor-
tance of the charge sector for the formation of the SEG
phase.

Independent of the sign of U the critical line for segre-
gation is rescaled Gc → K2

c Gc, i.e. for Kc �= 1 the critical
line is given by Gc0/K2

c , where Gc0 is the critical line for
U = 0. For the case x = nc/2, the general form of the
critical segregating interaction is given by

Gc/t =
1

K2
c

[
0.5 sin(ncπ/2)
1 − sin(ncπ/2)

]
. (32)

Using the weak-coupling form of Kc [equation (17)], Gc

as a function of x + nc/2 for U > 0 and U < 0 is shown
by the red and black dotted lines in Figure 1. The critical
line is robust in the presence of weak interactions between
the conduction electrons.

4.2 Ordered phases

Until now our analysis of the SEG phase was limited to
the case x + nc/2 < 1. Here we consider the appearance
of ordered phases in the half-filling limit x + nc/2 = 1.
For the corresponding (x+nc = 1) spinless FKM (i.e. one
c-electron for each A-atom), a crystalline ground state is
always realized for sufficiently large values of G. In the
special case when x = nc = 0.5, the spinless FKM is in
the so-called checkerboard state, where the B atoms oc-
cupy one sublattice only. This is known to be the ground
state for G � t and G � t [2,6]; numerical results indi-
cate that it remains the ground state also for intermediate
couplings [27,8].

Generalizing the argument of Section 4.1.1, for U = 0
the checkerboard state should be realized for all G when
x = 0.5 and nc = 1. For U < 0, the gapping of the spin
sector will not affect the stability of this state, as the ef-
fective Hamiltonian for the τ pseudospins is formally the
same as in the spinless FKM. When U > 0, however, the
G = 0 limit of equation (1) describes a Mott insulator
where the charge sector develops a gap. Phenomenologi-
cally, in the Mott insulator one c-electron occupies each
site and a finite energy is required to produce a charge
excitation. In the context of the Hubbard model, this re-
quires the minimization of the Umklapp term by replacing
2
√

2φc = 0 (mod 2π).
The competition between the Mott insulator and the

checkerboard phase is reminiscent of the physical situation

in the so-called ionic Hubbard model [28,19,29]. This dif-
fers from the conventional Hubbard model by the presence
of a staggered potential, i.e.

Hstag = ∆
∑

jσ

(−1)jnc
j,σ.

The bosonic representation of this potential is given by

Hstag = −2∆
Aa

α

∑

j

cos[
√

2φs(xj)] sin[
√

2φc(xj)]. (33)

In the semi-classical approximation, the energy of Hstag

is minimized by choosing
√

2φs = 0 (mod 2π),
√

2φc =
π/2 (mod 2π) or

√
2φs = π (mod 2π),

√
2φc = 3π/2

(mod 2π). This characterizes a 2kF CDW state and corre-
sponds to a Peierls-like phase [30]. The values of φc which
minimize Hstag, however, maximize the Umklapp term and
vice versa. This implies a competition between the two in-
sulating states, i.e. the Mott insulator with a homogeneous
ground state and the Peierls-like state with a CDW-type
ordering of the c electrons.

In the limit ∆ � U , the staggered potential produces
the larger gap at the Fermi surface and correspondingly
the Peierls-like state is stable. The spin and charge fields
adopt the values which minimize Hstag. In the opposite
limit ∆ � U , the Mott insulator has the larger gap: the
spin sector remains gapless while the charge sector has the
value that minimizes the Umklapp scattering energy. At
intermediate couplings, however, there is a third dielec-
tric insulator phase, where both the spin and charge sec-
tors are gapped [19,29]. The dielectric insulator exhibits
a spontaneous bond dimerization ∆B �= 0, defined

∆B =
∑

j,σ

(−1)j
〈
c†j,σcj+1,σ + H.c.

〉
. (34)

Within the dielectric insulator phase 〈φc〉 takes a value
intermediate between that in the Peierls and Mott insu-
lators, indicating the presence of excitations with frac-
tional charge [20]. The spin sector remains gapped as in
the Peierls insulator.

The application of the ionic Hubbard model results
to the EFKM with nc = 1 and x = 0.5 is straight-
forward: by replacing τz

j by (1/2)(−1)j (corresponding to
the checkerboard state) in equation (16) and neglecting
rapidly-fluctuating terms, we obtain a staggered field with
∆ = G which shows that the Peierls state of the ionic Hub-
bard model is equivalent to the checkerboard state in the
EFKM. However, since the atoms adopt the configuration
which minimizes the c-electron energy, a further mapping
requires a stability analysis of the FKM’s checkerboard
state for all U . At present, although we cannot provide a
rigorous proof in the general case, it can be argued that
the checkerboard state is stable in the limits U � G, t
and U � G, t. In the former case, the checkerboard state
clearly produces the larger gap at the Fermi energy, and
can be expected to be stable.

In the U � t, G case the same arguments indicate
that a Mott insulator is realized, where the effective
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Hamiltonian for the system to leading order in t/U is the
spin- 1

2 Heisenberg model

HH =
∑

j

JH(j)
(
Sj · Sj+1 − 1

4

)
(35)

with

JH(j) =
2t2

U
×
{

U2/(U2 − G2) W (xj) �= W (xj+1)
1 W (xj) = W (xj+1).

(36)
If the checkerboard state is realized, the exchange-
coupling is site-independent and JH(j) = 2t2U/(U2 −
G2) = J̃ . For any other atomic configuration, the exchange
constant in equation (35) is site-dependent. Although an
exact solution of equation (35) is not available, the en-
ergy of the checkerboard state (E = −2 ln(2)J̃) can be
compared to two other configurations: the SEG phase and
the “two-molecule” state (i.e. a four-site unit cell with B
atoms on the first two sites). In the SEG phase, the en-
ergy per site is the same [up to O(1/N)] as in the uniform
Heisenberg chain with coupling JH = 2t2/U , and cor-
respondingly the SEG phase has higher energy than the
checkerboard state. The two-molecule phase is equivalent
to a dimerized Heisenberg chain JH(j) = J(1 + (−1)jδ)
with J = t2(2U2 −G2)/[U(U2 −G2)] and δ = G2/(2U2 −
G2). Although energetically favourable as compared to the
uniform JH(j) = J state due to the modulation of the ex-
change, it is higher in energy by Jδ(2 ln 2−γδ1/3) as com-
pared to checkerboard state, where γ ∼ 0.3 [31]. Other
periodic phases can be considered as well but it seems un-
likely that these have lower energies: both the exchange-
modulation and the average value of the Heisenberg inter-
action across the lattice will be smaller than in the two
molecule state. In the limit U � t, G we conclude that
the checkerboard state is realized. Since the checkerboard
state is stable for U � t, G and U � t, G, it is suggestive
to conclude that it remains stable at all values of the Hub-
bard interaction, and the intermediate dielectric insulator
phase appears in the EFKM.

The conclusions for the checkerboard state are also
valid for the situation x + nc/2 = 1 with nc < 1. Since
the c-electron band is not half-filled, a Mott insulator is
not realized at any value of U when G = 0. However, as
has been shown in [32], a generalization of the ionic Hub-
bard model with scattering off an atomic configuration
of periodicity 2kF < π/a can induce the Mott insulator
phase. In the U = 0 limit of the EFKM a periodic state
is realized for sufficiently large G. The concentration of
A atoms is half the concentration of electrons and each
A-atom site will tend to be doubly occupied while each
B-atom site will tend to have zero occupation. For finite
U > G, however, the Coulomb penalty for double occu-
pancy will be larger than the energy gain, and the Peierls
insulator is unstable. Assuming that the crystalline con-
figuration remains stable, there will be a charge-transfer
from the A-atom sites to the B-atom sites to minimize
the Coulomb repulsion, thus leading to a Mott-like state.
As above, the competition between the Mott and Peierls

insulating states leads to an intermediate insulating state.
This a generalization of the dielectric insulator, distin-
guished by a non-vanishing 2kF -modulation of the bond
operator ∆B(2kF ) =

∑
j cos(2kF xj)〈c†j,σcj,σ + H.c.〉. The

formation of this state is dependent upon the stability of
the crystalline states, which remains to be investigated.
It should be noted that although for U = 0 the periodic
ionic configurations are the ground state in the G � t
model, in the G � t limit not all periodic configurations
are stable. Instead, as demonstrated in [6], there is a large
range of fillings satisfying x + nc/2 = 1 where the EFKM
shows a phase separation between a homogeneous (pure-
A or pure-B) and a periodic phase. The stability of these
phases in the presence of U remains an open problem.

5 Conclusions

In this paper we have generalized a previous analysis of
the spinless FKM [13,18] to a model including spin and
the Hubbard interaction between the c electrons. Using
a generalization of the bosonization technique, the dis-
crete atomic configuration is taken into account. This
is achieved by introducing a finite minimum wavelength
α > a for the bosonic density fluctuations of the c elec-
trons, which corresponds to a delocalization length scale.
The finite spread of the c-electron wavefunctions directly
leads to the appearance of an effective segregating inter-
action, which is revealed by the canonical transformation.

Adopting a pseudospin- 1
2 representation for the atoms,

the c electron fields are removed from the canonically
transformed Hamiltonian to obtain an effective Ising
model for the atomic configuration. For vanishing U ,
this effective model is the same as that derived for the
FKM [18], providing a correspondence between the EFKM
and the FKM. Using this analogy to define a “half-filling”
condition, the effect of the Hubbard term on the position
of the critical segregation line was investigated. It was
found that only the variation of the charge-sector proper-
ties are important for the onset of segregation: enhanced
charge compressibility for attractive interactions lowers
the critical line, while reduced charge compressibility in
the repulsive model increases the minimum coupling for
segregation.

We also examined the modifications of the ground
states at the EFKM’s “half-filling” point, where in the
U = 0 model the checkerboard phase is realized. For
U > 0, the checkerboard phase competes with the Mott
insulator in a similar way as the Peierls insulating state
in the ionic Hubbard model. Using weak-coupling and
strong-coupling results, we found that the checkerboard
atomic configuration remains stable for U � t, G and
U � t, G, suggesting the conclusion that an exotic insu-
lating state is realized in the EFKM. A similar situation
might occur for other periodic atomic configurations.

The EFKM is an important step in generalizing the
many exactly known results of the spinless model to more
realistic systems. A reasonable extension of this work
would be to assume that at least one of the atomic species



P.M.R. Brydon et al.: Ground states of an extended Falicov-Kimball model 81

in the binary alloy carries a magnetic moment, which
couples to the conduction electrons via a Kondo inter-
action. This is expected to lead to an interesting interplay
between charge and magnetic order as has been shown
for manganites [15]. Alternatively, extensions to include
a hybridization between the itinerant and localized or-
bitals [11,13], or a weak hopping term between nearest-
neighbour localized orbitals [12], could be used in describ-
ing valence transition physics.

Part of this work was performed within the EU CoMePhS
project.
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